100
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A Parametric Analysis of a Reservoir-Extended Porous Slider Bearing with Self-Circulation and Cavitation Effects

, , &
Pages 60-74 | Received 14 Aug 2008, Accepted 17 Sep 2009, Published online: 09 Dec 2009
 

Abstract

This work considers a porous slider bearing fed by an external contiguous reservoir. The bearing system consists of a lubricating film, a porous medium, and the external reservoir, which runs along the entire length of the porous medium. The Darcy model is used for modeling the flow inside the porous medium. The translational velocity of the reservoir wall and porous medium, together with the convergent-divergent slider lubricating film profile, acts to pump the fluid out of and into the lubricating film and the reservoir, respectively. Cavitation effects are modeled realistically using the switch function and modified equations of the Elrod and Vijayaraghavan models. The model presented herein shows the bearing capable of supporting a load, while simultaneously the convergent/divergent film action (equivalent to an eccentric shaft in a journal bearing) helps by pumping the fluid back and forth between the lubricating region and the reservoir without the use of any external means. Thus, the concept of a bearing using its own action for the circulation of the lubricating fluid for autonomous operation has been proven to be feasible.

Acknowledgments

Reviewed by Gordon Kirk

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.