217
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Tribo-Performance Analysis of Fly Ash–Aluminum Coatings Using Experimental Design and ANN

, , , &
Pages 533-542 | Received 20 Sep 2009, Accepted 16 Nov 2009, Published online: 24 Jun 2010
 

Abstract

This article proposes the application of an artificial neural network (ANN) to a Taguchi orthogonal experiment to develop a robust and efficient method of analyzing and predicting the solid particle erosion wear response of a new class of metal–ceramic coatings. An ANN model based on data obtained from experiments performs self-learning by updating weightings and repeated learning epochs. In this work, plasma-sprayed coatings of fly ash premixed with aluminum powder in different weight proportions are deposited on aluminum substrates at various input power levels of the plasma torch. Erosion wear characteristics of these coatings are investigated following a plan of experiments based on the Taguchi technique, which is used to acquire the erosion test data in a controlled way. The study reveals that the impact velocity is the most significant among various factors influencing the wear rate of these coatings. An ANN approach is then implemented taking into account training and test procedure to predict the tribo-performance under different erosive wear conditions. This technique helps in saving time and resources for a large number of experimental trials and successfully predicts the wear rate of the coatings both within and beyond the experimental domain.

Review led by David Burris

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.