321
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear Analysis of Squeeze Film Damper with Entrained Air in Rotordynamic Systems

, , &
Pages 132-144 | Received 09 Apr 2010, Accepted 29 Sep 2010, Published online: 24 Nov 2010
 

Abstract

Squeeze film dampers are widely used in aircraft engines, land-based gas turbines, and other rotating machines to improve system damping. They often have entrained air within the oil film, which is usually not taken into account in rotordynamics analysis due to lack of good formulations of the effects involved. The effects on the damping force calculation can be significant. This work presents a new formulation of the nonlinear Reynolds equation pressure evaluation within the squeeze film damper, including the effects of entrained air, with resulting changes in effective lubricant density and viscosity. Viscosity and density expressions are developed as a function of the air/oil volume fraction. The density of the bubbly oil is a function of the air bubble diameter, which changes due to surface tension effects during lubricant motion in the bubbly oil film. The lubricant viscosity decreases due to the entrained volume of air but increases due to the surface tension effects taken from experimental tests. Pressure supply and bubbly oil film cavitation effects are included in the analysis and end seal effects are evaluated. The nonlinear time-transient forces in the squeeze film damper are evaluated as functions of (1) lubricant and air properties; (2) damper geometry including diameter, length, clearance; (3) end seal properties; and (4) shaft position and velocity. Example cases of pressure calculations and radial and tangential forces are shown. Example nonlinear transient motions are presented for a rigid, symmetrical rotor and for a nonsymmetrical rotor representing a gas turbine–type fan rotor.

ACKNOWLEDGMENT

The interest and the financial support of the members of the Rotating Machinery and Controls (ROMAC) Laboratory in the Department of Mechanical and Aerospace Engineering at the University of Virginia are gratefully acknowledged.

Review led by Gordon Kirk

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.