225
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of Mechanism of Boundary Lubrication in Fully Formulated Commercial Engine Oil Using Design of Experiment

&
Pages 208-226 | Received 03 May 2010, Accepted 23 Oct 2010, Published online: 23 Dec 2010
 

Abstract

Design of experiment (DOE) analysis was used to study the desirability factor between contact loads, oil quantity, and surface roughness. The analysis developed a series of interactions between factors to get the best correlations between contact loads and oil quantity that leads to the stabilization of the tribofilm. A closed-loop boundary condition test was developed to examine the behavior of lubricants under boundary conditions. Polished and unpolished testing specimens were established to show the differences in friction and wear profiles under extreme boundary lubrication. The boundary condition test was very reproducible and can be used to study the mechanism of boundary lubrication. The mechanism of antiwear film formation and breakdown was followed carefully by monitoring the friction coefficient over the duration of the test and running scanning electron microscopy (SEM) on selected tests. The thickness of the boundary layer lubricant, which is determined by the concentration of additives in the supplied oil, is optimized for the polished and unpolished test cylinders. The optimized desirability shows the best loading and oil supply condition that leads to greater consistency in the breakdown of the tribofilm for a fixed contact load and fixed amount of fully formulated zinc dialkyldithiophosphate (ZDDP) oil. The number of cycles to breakdown of the protective tribofilm is also consistent with the applied load for a fixed thickness of the boundary lubrication film. It is evident that at lower contact loads a stable tribofilm rich in phosphorous is formed, whereas at higher contact loads the breakdown of the tribofilm results in wear debris and higher sulfur content on the wear surface.

ACKNOWLEDGEMENTS

The authors thank the reviewers for their useful suggestions and the Faculty of Engineering at the University of Balamand. Support provided by the State of Texas as part of a Technology Development and Transfer Grant and Platinum Research Organization LLC is gratefully acknowledged. The authors thank Professor Pranesh B. Aswath, Professor Ronald L. Elsenbaumer, and Dr. Harold Shaub for useful discussions.

Review led by Elaine Yamaguchi

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.