679
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Disc Brake Materials for Squeal Reduction

, , &
Pages 644-656 | Received 27 Dec 2010, Accepted 09 May 2011, Published online: 18 Jul 2011
 

Abstract

A nontraditional evaluation tool is introduced to examine the effects of different materials, in practical applications, that are used in fabricating disc brake components for commonly used or special requirements such as heavy-duty performance and racing cars. As an extension to earlier finite element (FE) disc brake models, a detailed FE model of the whole disc brake corner that incorporates the wheel hub and steering knuckle is developed and validated using experimental modal analysis. Stability analysis of the disc brake corner using the finite element software ABAQUS is carried out to predict squeal occurrence also taking into account the negative and positive damping effects and friction material real surface to increase the accuracy of prediction. A Taguchi method–based design of experiment is used to better assess the contributions of different materials and its interaction effects for effective reduction of brake squeal. The results showed that the pad friction material contributes 56% to the total system instability (squeal generation). The rotor material contributes 22% of the system instability. Caliper and bracket materials participate 11 and 11%, respectively.

Acknowledgments

a Review led by Farshid Sadeghi

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.