226
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Air Injection as a Thermal Management Technique for Radial Foil Air Bearings

&
Pages 666-673 | Received 12 Jul 2010, Accepted 16 May 2011, Published online: 18 Jul 2011
 

Abstract

A thermal management technique for radial foil air bearings was experimentally evaluated. The technique is based on injecting air directly into the internal circulating fluid-film to reduce bulk temperatures and axial thermal gradients. The tests were performed on a single top foil, Generation III, radial foil bearing instrumented with three thermocouples to monitor internal temperatures. A through hole in the bearing shell coincident with the gap between the top foil's fixed and free ends provided entry for the injection air. The tests were conducted at room temperature with the bearing operating at speeds from 20 to 40 krpm while supporting 222 N. Two different mass flow rates of injection air were evaluated for this method, 0.017 and 0.051 kg/min. Test results suggest that the air injection approach is a viable thermal management technique capable of controlling bulk temperatures and axial thermal gradients in radial foil air bearings.

Acknowledgments

This article is not subject to US copyright

Review led by Gita Talmage

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.