474
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Bearing Fatigue Life Tests of Two Advanced Base Oils for Space Applications Under Vacuum and Atmospheric Environments

, , , , , & show all
Pages 859-866 | Received 23 Jul 2010, Accepted 20 Jul 2011, Published online: 12 Oct 2011
 

Abstract

Four series of rolling-element bearing fatigue tests were conducted with 51104 size thrust ball bearings with three balls made from SUJ2 (AISI 52100) steel lubricated with two advanced synthetic base oils used for space applications. The test lubricants were perfluoropolyether (PFPE) and multiply alkyated cyclopentane (MAC). Each oil was tested with bearings under vacuum and atmospheric environments. The bearings were tested at a maximum Hertzian stress of 4 GPa on the inner and outer races. The outer race was rotated at a speed of 250 rpm. A pool lubrication system was used. Fresh lubricant was used for each test bearing. Testing in vacuum conditions was at 5 × 10−2 Pa. The test oils were analyzed to determine whether changes occurred as a result of operating in air and in a vacuum. In a vacuum environment, the PFPE 815Z oil exhibited a longer fatigue life than the MAC 2001A oil. However, in an air environment, the MAC 2001A oil had a longer L10 fatigue life than the PFPE 815Z oil. The fatigue life tests of PFPE 815Z oil in vacuum resulted in a longer L10 life than when tested in an air environment. In an air environment, hydrogen fluoride was generated in the bearing tests with the PFPE 815Z oils. Under vacuum conditions, hydrogen fluoride was not generated with the PFPE 815Z oil, resulting in longer bearing fatigue lives. The fatigue life tests of MAC 2001A oil in a vacuum resulted in shorter L10 fatigue life than in an air environment. The shorter life was attributed to the lower elastohydrodynamic oil film formation with the MAC 2001A oil because of a higher operating temperature and decomposition of the oil in vacuum.

ACKNOWLEDGEMENTS

This work was partly funded by a Grant-in-Aid for Scientific Research (C) (No. 18560138) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Review led by Elain Yamaguchi

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.