347
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Solid Particle Erosion Behavior of WC-CoCr Nanostructured Coating

&
Pages 781-788 | Received 28 Nov 2012, Accepted 16 Apr 2013, Published online: 29 Jun 2013
 

Abstract

In the present study, solid particle erosion resistance of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings was evaluated. Erosion testing was conducted using alumina (Al2O3) powder as the erodent with three different impact angles (30, 60, and 90°) and impact velocity was kept constant. The coatings were deposited using two different powders; one was composed of conventional WC particles and second one contained nanoscale particles mixed with CoCr binder material. Erosion testing was carried out at room temperature using an air-jet erosion test setup. The effect of varying impact angles was studied and discussed with the help of scanning electron microscopy images of worn surfaces of coatings. The results showed that coating properties like microhardness and fracture toughness have a strong influence on the erosion behavior. During erosion testing, material was removed by fracturing and pullout of WC grains from the binder matrix. The morphology of the eroded surface also showed cutting, lip, and groove formation in the binder matrix caused by the repetitive impacts of erodent particles. It was observed that coating with nano-WC grains exhibited higher erosion resistance compared to conventional coating.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the facilities provided by M/s Industrial Processors and Metallizers Pvt. Ltd. (IPM), New Delhi, India, for the successful completion of experimental work. The authors thank Rahul Sood (Technical Director, IPM Pvt. Ltd.) for his wonderful suggestions about thermal spraying and in-flight diagnostics study.

Review led by Dong Zhu

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.