533
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Three Laboratory Tests to Quantify Mild Wear Rate

, &
Pages 919-928 | Received 17 Dec 2012, Accepted 16 May 2013, Published online: 08 Aug 2013
 

Abstract

Because the viscosities of engine and transmission lubricants are lowered in order to reduce hydrodynamic friction and thus energy consumption, it is important to ensure that wear rates do not increase and thus machine durability is not impaired. In practical terms this means that we require reliable methods for measuring the mild wear rates present in most lubricated machine components.

This article compares three mild wear reciprocating laboratory tests, one based on the high-frequency reciprocating rig (HFRR) and two on the mini-traction machine (MTM), in order to explore the extent to which wear rate is determined by the test configuration. The results show that some additive-containing lubricants including blends of antiwear additive and dispersant give quite consistent wear rates, independent of whether the surface is in continuous or intermittent contact, whereas others such as two friction modifiers do not. Possible reasons for these differences are discussed. The importance of accounting for wear during running-in and the need to remove any thick tribofilms present before quantifying wear volume are also confirmed.

Acknowledgments

Review led by Gary Barber

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.