382
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Study of the Load-Carrying Capacity of Lubricated Parallel Sliding Textured Surfaces including Wall Slip

, , &
Pages 134-145 | Received 07 Aug 2012, Accepted 05 Oct 2013, Published online: 26 Dec 2013
 

Abstract

This article analyzes the combined effect of surface texturing and wall slip on the load-carrying capacity of parallel sliding systems. A new modified Reynolds equation with slip is proposed, based on the critical shear stress model, to reveal the hydrodynamic load-carrying capacity. A range of parameters such as texturing zone, texture cell aspect ratio, critical shear stress, and slip length are analyzed. It is shown that the optimal texturing zone length oscillates around 75% of the slider length. A slight shift of the optimized texturing zone toward the inlet of the contact is observed when the critical shear stress is increased. The numerical analysis also shows that there is a unique threshold value of the critical shear stress for every texture cell aspect ratio. When this ratio is increased, the threshold value increases, thus influencing the slip considerably. Slip has a positive effect on the load-carrying capacity for critical shear stress lower than the threshold value, whereas it has no effect on higher values. It is also found that in comparison with a solely textured surface, the load-carrying capacity of the combined textured/wall slip pattern can be increased by around 300% using the optimized slip parameters.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.