250
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A Concurrent Reynolds BC Algorithm for Piston Ring Cavitation Lubrication Problems with Surface Roughness

, , , , &
Pages 353-365 | Received 04 Apr 2013, Accepted 26 Nov 2013, Published online: 10 Mar 2014
 

Abstract

Piston ring dynamics play an important role in the lubricant characteristics of reciprocating engines that lead to engine wear and high consumption of lubricating oil. Due to the complexity of realistic test and working conditions, a study of cavitation with surface roughness and its effect on piston ring lubrication was conducted in a simulation program based on mass-conserving theory that is solved with the Newton-Raphson method. Lubrication models such as mixed lubrication, asperity contact, blow-by/blow-back flow, and cavitation were used in this study. The simulation algorithm consists of four processes: establishment of the three different lubrication models, dealing with the finite difference method, numerical stability treatment for the cavitation zone, and the addition of surface roughness and the shear factor to the model. Results calculated with this model were compared with two other models, and an analysis of the results indicates that the developed simulation program can illustrate problems of piston ring lubrication in accordance with the state of art of lubrication theory.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.