350
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Tribological Performance of Cu Hybrid Composites Reinforced with Graphite and TiC Using Factorial Techniques

, , &
Pages 908-918 | Received 21 Oct 2013, Accepted 06 May 2014, Published online: 08 Aug 2014
 

Abstract

In this study, a copper hybrid metal matrix composite reinforced with graphite (5, 10, and 15 vol%) and TiC (5, 10, and 15 vol%) was processed by a powder metallurgy route. Optical micrographs confirm the uniform distribution of reinforcements in the copper matrix. The hardness of the composites decreased with the addition of graphite. However, the addition of TiC into the copper matrix increased the hardness of the composites due to its high hardness. The influence of graphite percentages, load, sliding speed, and sliding distance on the wear of the as-sintered hybrid composites was studied based on the design of experiments. Analysis of variance (ANOVA) was used to study the effect of the parameters on the wear weight loss of the hybrid composites. The weight loss due to wear of the hybrid composites decreases from 0.1345 to 0.0830 g as the volume percentage of graphite increases from 5 to 15%. Results indicated that the normal load has greater static influence of 43.85%, sliding distance has an influence of 29.84%, percentage of graphite has an influence of 15.17%, and sliding speed has an influence of 1.83% on the weight loss of copper hybrid composites due to sliding wear. The worn-out surfaces were analyzed using electron microscopy, which reveals that the addition of both hard ceramic reinforcement TiC and soft solid lubricant graphite significantly improves the tribological performance of the copper composites.

ACKNOWLEDGEMENTS

The authors are grateful to Professor B. K. Mishra, Director, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, for his valuable suggestions and guidance during the course of this investigation. Assistance received from our other colleagues in the Surface Engineering Department is also gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.