907
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

A Review of Microstructural Alterations around Nonmetallic Inclusions in Bearing Steel during Rolling Contact Fatigue

&
Pages 1142-1156 | Received 19 Sep 2015, Accepted 03 Jan 2016, Published online: 10 Aug 2016
 

ABSTRACT

Microstructural alterations in bearing steels during rolling contact cycling have been reported in the literature for more than 60 years. These changes appear in different shapes and locations. One class of such alterations is “butterfly wings”: regions of microstructurally transitioned material that appear diagonally around nonmetallic inclusions and may serve as fatigue crack initiation sites. Over the course of the past half a century numerous experimental and multiple analytical efforts have been made to understand and model this phenomenon, yet a lot is to be discovered and understood about root causes and mechanisms leading to butterfly formation. This article presents a comprehensive overview of the crack nucleation phenomena due to butterfly formation, its characteristics, and its negative impact on bearing service life. Significant attempts that have been made to solve the problem over the past half a century are mentioned, with a focus on recent work. Unanswered dilemmas are particularly discussed to highlight avenues of future research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.