308
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Sliding Direction on EHL Film Shape Under High Sliding Conditions

, &
Pages 87-94 | Received 12 Aug 2015, Accepted 22 Jan 2016, Published online: 11 Jul 2016
 

ABSTRACT

It is well known that a sliding speed influences a lubricant film thickness of elastohydrodynamic rolling–sliding contacts significantly. The effect of sliding is described quite well for unidirectional rolling and sliding; however, there are a limited number of papers dealing with sliding in different directions. This study describes how the sliding direction influences elastohydrodynamic film shape under high sliding conditions. An optical ball-on-disc tribometer together with thin-film colorimetric interferometry method is used for a film thickness measurement. The results show that the sliding direction influences lubricant film shape and the effect is connected with dimple phenomena. The temperature–viscosity wedge effect is discussed as a possible mechanism. The results are important for a film thickness prediction under high sliding conditions and provide experimental evidence for an extension of elastohydrodynamic lubrication (EHL) theory.

Funding

This research was supported by the Czech Science Foundation (Grant No. P101/11/1115) and Ministry of Education Youth and Sports (Project No. CZ.1.07/2.3.00/30.0005).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.