405
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Microabrasion Wear Behavior of Fast-Borided Steel Tooth Drill Bits

, , , , &
Pages 267-275 | Received 31 Jul 2015, Accepted 16 Feb 2016, Published online: 10 Aug 2016
 

ABSTRACT

In this study, the surface of steel tooth drill bits (Ni-Cr-Mo based) was subjected to the solid-state boriding treatment with 10- to 50-nm nanoboron powder. Boriding processes were carried out at a constant temperature of 1273 K for 30, 45, 60, 75, 90, and 105 min using a solid-state box boriding technique. Borided drill bit samples were characterized by conventional methods (microstructure, microhardness, X-ray diffraction, and chemical analysis). The wear behavior of borided samples was tested at different loads and sliding speeds by a microabrasion experimental setup. Metallographic studies showed that the boride layers have a sawtooth morphology and consist of FeB and Fe2B. The thickness and hardness of the boride layer were 35.29–202.56 μm and 1300–2333 HV0.1, respectively, depending on the duration. The wear resistance of borided samples increased significantly due to the increase in surface hardness and lubricating effect, both of which were caused by the boriding process. A groove wear mechanism prevailed in borided samples, whereas that of bare steel tooth drill bits (STDBs) was grooving, rolling, and mixed.

Funding

This study was supported by the TUBITAK Council (Project No. 213M629).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.