21
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Wavelength Dependence of Micro-EHL Pressure Rippling with Random Surface-Roughness Profiles

&
Pages 389-395 | Published online: 25 Mar 2008
 

Abstract

This paper studies line-contact elastohydrodynamic lubrication (EHL) between two rough surfaces of random roughness profiles. A transient micro-EHL model is used to simulate the problems. Numerical results are obtained for a range of practical operating conditions and for relatively small specific film thicknesses (i.e., the A-values). The study reveals the wavelength dependence of micro-EHL pressure rippling. For the same A-value, the size of the pressure rippling is shown to be significantly smaller than those predicted earlier using more idealized system models. Furthermore, the pressure distribution is essentially unaffected by the short-wavelength components in the random surface-roughness profiles, except under near rolling conditions. It is shown that lubricant non-Newtonian shear-thinning is the mechanism that suppresses the short-wavelength pressure ripples. With a Newtonian lubricant, sharp pressure rippling is generated by the small-scale surface roughness textures. Since EHL lubricants exhibit significant shear-thinning and since the surfaces possess random roughness profiles, the results reported in this paper reflect a main feature that may prevail in realistic EHL conjunctions. Future work will establish a theoretical basis for the numerical analysis conducted in this research.

Presented at the 49th Annual Meeting in Pittsburgh, Pennsylvania May 1–5, 1994

Notes

Presented at the 49th Annual Meeting in Pittsburgh, Pennsylvania May 1–5, 1994

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.