919
Views
33
CrossRef citations to date
0
Altmetric
Articles

Microbial Degradation of High Molecular Weight Polycyclic Aromatic Hydrocarbons with Emphasis on Pyrene

, &
Pages 124-138 | Received 08 Aug 2015, Accepted 07 Feb 2017, Published online: 07 Mar 2017
 

ABSTRACT

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is a major concern in the environment due to their toxic nature and ubiquitous occurrence. PAHs remain sorbed to soil organics and interact with non-aqueous phases and therefore, become less available for degradation. Several microorganisms like bacteria, fungi, and algae have the capability to degrade soil-sorbed PAHs using different metabolic pathways. The focus of this review is microbial degradation of high molecular weight PAH pyrene by pure and mixed culture, including biological aspects of biosurfactants produced during the process for increasing the bioavailability of soil-sorbed or non-aqueous phase pyrene. High molecular weight PAHs are generally recalcitrant to microbial attack, although some bacteria, fungi, and algae are capable of transforming these compounds by using them as the sole source of carbon and energy. Also, the use of microbial consortium has been found to be more efficient and better from an economic point of view for degradation due to synergistic interactions among microbial species. The review also explains the role of catabolic genes involved in the degradation of pyrene.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.