665
Views
22
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Agricultural Waste Burning on PM2.5-Bound Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai, Thailand

, , , , , , , , , , ORCID Icon, , , , & show all
Pages 749-770 | Received 23 Dec 2019, Accepted 29 Mar 2020, Published online: 20 Apr 2020
 

Abstract

PM2.5 is widely regarded as a major air pollutant due to its adverse health impacts and intimate relationship with the climate system. This study aims to characterize the chemical components (e.g., organic carbon (OC), elemental carbon (EC), water soluble ionic species (WSIS) and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected at Doi–Inthanon in Chiang-Mai, Thailand, the highest mountain in Thailand. All samples (n = 50) were collected by MiniVolTM portable air samplers from March 2017 to March 2018. In this study we found the average PM2.5 concentration was 100 ± 48.6 μg m−3. The OC/EC ratio was 6.8 ± 3.0, and the decreasing order of the WSIS concentrations was SO42->Na+>Ca2+>NH4+>NO3->K+>Cl>NO2->Mg2+> F-. The total concentrations of nineteen PAHs were defined as the sum of Ace, Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]F, B[e]P, B[a]P, Per, Ind, B[g,h,i]P, D[a,h]A, Cor, and D[a,e]P. The concentration of total PAHs was 2.361 ± 2.154 µg m−3. Principal component analysis (PCA) highlights the importance of vehicular exhaust, biomass burning, diesel emissions, sea-salt aerosols and volatilization from fertilizers as the five dominant potential sources that accounted for 51.6%, 16.2%, 10.6%, 5.20% and 3.70% of the total variance, respectively. The rest of the 12.7% variance probably is associated with unidentified local and regional sources such as incinerators, joss paper/incense burning, and domestic cooking. Interestingly, the results from the source estimations from the PCA underlined the importance of vehicular exhaust as the major contributor to the PM2.5 concentrations in the ambient air of Don-Inthanon, Chiang-Mai province. However, it is crucial to emphasize that the impacts of agricultural waste burning, fossil fuel combustion, coal combustion and forest fires on the variations of OC, EC and WSIS contents were not negligible.

Acknowledgements

The authors acknowledge the assistance of the local staff from the National Astronomical Research Institute of Thailand (Public Organization) for field sampling.

Additional information

Funding

This study was conducted with the approval of the Thailand Research Fund and Institute of the Earth Environment, Chinese Academy of Science (IEECAS).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.