157
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design, Synthesis and Bioactivity Investigation of Novel 2,3-Diarylthiazolidine-4-Ones as Potent α-Glucosidase Inhibitors

, , , &
Pages 5748-5766 | Received 23 Mar 2021, Accepted 01 Jul 2021, Published online: 09 Aug 2021
 

Abstract

Herein, we have designed and synthesized sixteen novel 2,3-diarylthiazolidin-4-one derivatives 6a-p and tested their activity as α-Glucosidase inhibitors. Target compounds 6a-p were characterized using spectroscopic methods (1H-NMR, 13C-NMR, MS, IR), elemental analysis, and melting point. α-Glucosidase inhibition activity was evaluated using the α-Glucosidase enzyme inhibition kit. All 6a-p showed higher α-Glucosidase inhibition activity (90 to 704 µM) in comparison to acarbose as a standard (IC50: 750 µM). 6p, 6m, and 6f exerted the best activity with the IC50 value of 90, 100, and 149 µM respectively. Enzyme kinetic studies showed a competitive mode of inhibition for the most active compound, 6p; molecular docking study revealed the mode of interactions between the most active compounds and enzyme active site. To evaluate the cytotoxicity profile of the synthesized compounds, an MTT assay was done on three different cell lines which showed all 6a-p are safe and nontoxic with IC50 values higher than 750 µM.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by Research Council of Tehran University of Medical Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.