107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Imidazole-Based Alkaloids from Marine Sponges (Leucetta and Clathrina) as Potential Inhibitors Targeting SARS-CoV-2 Main Protease: An In Silico Approach

ORCID Icon & ORCID Icon
Pages 897-912 | Received 20 Jun 2022, Accepted 13 Feb 2023, Published online: 01 Mar 2023
 

Abstract

Imidazole-based compounds form a prominent class of heterocyclic compounds, displaying diverse applications, especially with regards to its biological and pharmacological activities. Molecular docking, simulations, and drug-likeness prediction were performed on 45 imidazole-based alkaloids from two species of marine sponges (Leucetta and Clathrina). The study seeks to identify possible inhibitors of the SARS-CoV-2 Main Protease in an effort to battle the prevailing pandemic which has been caused by the widespread infections of the SAR-CoV-2 virus in its varied mutated forms. Computational analysis with MOE 2015.10 program reveals that, among the imidazole-based alkaloids, Naamidines have a high affinity for the target protein (PDB ID:6W63), even interacting with the catalytic dyad, as compared to its non-covalent inhibitor X77. Among all the top-scoring ligands, Naamidine H produced the highest binding score of −8.87078 kcal/mol. MD simulation studies with NAMD confirms the stability of the interactions of Naamidines with the target protein. MM-GBSA calculations were performed on the top binding ligands which further confirms the binding affinity of the top-scoring ligands. Computational and pharmacological investigations in this study proposes Naamidines, as effective inhibitors of Mpro. Naamidine I, Naamidine E, and Pyronaamidine could be potential anti-viral candidates against SAR-CoV-2.

Acknowledgments

Authors are thankful to the St. Joseph’s College (autonomous) Jakhama and St. Joseph University, Dimapur for the facilities and infrastructure.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.