129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lipase as Biocatalyst- for Synthesis of Phenol by Using Box–Behnken Design

, & ORCID Icon
Received 15 May 2023, Accepted 04 Aug 2023, Published online: 21 Aug 2023
 

Abstract

This work highlighted the proficient and naturally safe methodology for the phenol synthesis using biocatalyst lipase. The development of sustainable synthetic protocol for various organic transformations is an important area of research attracts researchers to avoid use of volatile and hazardous organic solvents in reaction for greener and eco-friendly protocols. Lipase is subclass of esterase enzymes and acts as biocatalyst with industrial significance. They carry out biochemical transformation in non-aqueous and aqueous phases quickly. To further make the process more specific Design Expert software was used for the optimization of synthesize phenol for maximum % Yield and % Purity. Effect of temperature, Concentration of Catalyst, and Volume of Water was selected as an independent factor to get the maximum % Yield and % Purity of the phenol. The results confirmed the mathematical model robustness and justify experimental design. Therefore, the current protocol for synthesis of phenols from phenylboronic acid is greenest and environmentally benign alternative. The current convention has many benefits, like phenomenal product yields, reduced time of reaction, simple procedure to work up, and extensive substrate scope, cost-effective and also lipase was recuperated and reused multiple times without significant loss of its catalytic activity.

Author contributions

The manuscript was written through the contributions of all the authors. All authors have approved the final version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supporting information

Experimental details, characterization data, and NMR charts of selected compounds are included in the supporting information.

Additional information

Funding

This article was funded by TEQIP III of Institute of Chemical Technology, Mumbai.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.