49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, X-Ray, Hirshfeld Surface, DFT, and Molecular Docking Investigation of N-(5H-Dibenzo[a,d][7]Annulen-5-Ylidene)-2-Methylpropane-2-Sulfinamide

, , , & ORCID Icon
Received 01 Aug 2023, Accepted 08 Oct 2023, Published online: 23 Oct 2023
 

Abstract

Dibenzocycloheptene antidepressants are tricyclic antidepressants (TCAs) that contain the dibenzocycloheptene moiety in their chemical structures. They are used to treat major depressive disorder, anxiety disorders, chronic pain, and addiction. Herein, we report the synthesis of a pure tricyclic antidepressant containing dibenzocycloheptene moiety named N-(5H-dibenzo[a,d][7]annulen-5-ylidene)-2-methylpropane-2-sulfinamide (3) in high chemical yield through condensing (R)-tert-butanesulfinamide with a dibenzosuberon ketone. Its structure is elucidated by employing the X-ray technique, NMR spectroscopy characterization, and DFT calculations at the B3LYP/6-31++G(d,p) level of theory. The geometrical parameters are relatively well reproduced, and the optimized and X-ray geometries are relatively well superimposed. The interconnects in the crystalline form of 3 were identified through the analysis of its Hirshfeld surface (HS) and fingerprint plots. The highest interatomic contacts were found between HH of 58.2% and C.H of 30.6%. Further, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) pharmacokinetics, and physicochemical properties of 3 were determined, which showed that 3 may act as a carbonic Anhydrase I inhibitor. The binding affinity of 3 into the binding site of carbonic Anhydrase I is investigated using a molecular docking study. It forms a stable complex into the binding site of CA I with a binding energy of −7.12 kcal/mol.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.