Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 41, 2002 - Issue 8
246
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

NUMERICAL SIMULATION OF THREE-DIMENSIONAL LAMINAR, SQUARE TWIN-JET IMPINGEMENT ON A FLAT PLATE, FLOW STRUCTURE, AND HEAT TRANSFER

Pages 835-850 | Published online: 30 Nov 2010
 

Abstract

The flow and heat transfer characteristics of impinging laminar square twin jets have been investigated numerically through the solution of three-dimensional Navier-Stokes and energy equations in a steady state. The simulations have been carried out for jet-to-jet spacings of 4, 6, and 8 and for nozzle-exit-to-plate distances between 0.25D and 5D. The calculated results show that the flow structure of square twin jets impinging on a heated plate is strongly affected by the jet-to-plate distance. In addition, for very small jet-to-plate distances (L z , 0.25D), no upwash fountain flow can form at the collision point where the jets are merely diverted in the transverse direction. For such nozzle-to-plate distances the wall jet fills the whole gap between the plates with no vortex motion around the twin jets.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.