Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 45, 2004 - Issue 6
219
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

APPLICATION OF THE PARTIAL ELIMINATION ALGORITHM FOR SOLVING THE COUPLED ENERGY EQUATIONS IN POROUS MEDIA

&
Pages 539-549 | Received 01 Jun 2003, Accepted 01 Sep 2003, Published online: 17 Aug 2010
 

Abstract

This article discusses the solution of coupled energy equations in local thermal nonequilibrium models for porous media. The decoupled solution approach, in which the interaction between the solid and the fluid temperature fields is treated in an explicit manner, converges very slowly when the interface heat transfer coefficient and/or the specific surface area of the porous medium are large (large Biot number). An attractive alternative to the decoupled approach is the partial elimination algorithm, proposed by D. B. Spalding. In this algorithm, the discretization equations are rearranged so that the resulting equations are more implicit and take directly into account the coupling between the two phases. The convergence rates of these two solution procedures are studied with reference to convective heat transfer in a two-dimensional channel filled with a porous medium. The partial elimination algorithm converges much more quickly than the decoupled procedure, with the number of iterations required for convergence becoming constant for large Biot numbers.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.