Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 46, 2004 - Issue 10
152
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

DIRECT COMPUTATION OF A HEATED AXISYMMETRIC PULSATING JET

, &
Pages 957-979 | Received 01 Apr 2004, Accepted 01 Aug 2004, Published online: 17 Aug 2010
 

Abstract

Effects of pulsating frequency and amplitude on the flow structure and mixing of a heated axisymmetric subsonic jet have been examined by direct solution of the compressible Navier-Stokes equations using highly accurate numerical methods. The organized unsteadiness associated with the periodic pulsation leads to a variety of vortical structures in the pulsating flow field. It is found that the vortical structures become smaller with increased pulsating frequency. At a high enough pulsating frequency, the jet is underexpanded near the nozzle and it does not develop large-scale vortical structures downstream. It is also found that pulsating amplitude has a strong effect on the flow structure and that vortex pairing occurs at relatively low pulsating amplitudes. The simulations show that lower pulsating frequency and larger pulsating amplitudes lead to stronger jet mixing with the ambient and faster decay of temperature.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.