Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 50, 2006 - Issue 4
90
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

HEAT TRANSFER, PHASE CHANGE, AND THERMOCAPILLARY FLOW IN FILMS OF MOLTEN METAL ON A SUBSTRATE

&
Pages 301-313 | Received 23 Mar 2005, Accepted 05 Jan 2006, Published online: 13 Jun 2008
 

Abstract

A mathematical model has been developed for heat transfer and fluid flow in thin films of molten metal during nanosecond pulsed laser irradiation. Heat conduction in the substrate is modeled using the finite-difference approach, while description of heat transfer and viscous flow in the film is based on the assumption of the large ratio of laser beam radius to film thickness and involves numerical solution of a partial differential equation for the thickness. The model includes the highly nonlinear dependence of evaporative flux on local interfacial temperature and positive disjoining pressure due to free electrons in the metal. Thermo-capillary stresses which result from radially nonuniform heating are identified as the main mechanism of removal of liquid metal from the irradiated area. Characteristic times of the process, as well as shapes of the molten surface, agree with experimental observations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.