Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 55, 2009 - Issue 8
1,760
Views
250
CrossRef citations to date
0
Altmetric
Original Articles

Natural Convection Heat Transfer in an Inclined Enclosure Filled with a Water-Cuo Nanofluid

&
Pages 807-823 | Received 16 Dec 2008, Accepted 19 Feb 2009, Published online: 08 Apr 2009
 

Abstract

This article presents the results of a numerical study on natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid. Two opposite walls of the enclosure are insulated and the other two walls are kept at different temperatures. The transport equations for a Newtonian fluid are solved numerically with a finite volume approach using the SIMPLE algorithm. The influence of pertinent parameters such as Rayleigh number, inclination angle, and solid volume fraction on the heat transfer characteristics of natural convection is studied. The results indicate that adding nanoparticles into pure water improves its heat transfer performance; however, there is an optimum solid volume fraction which maximises the heat transfer rate. The results also show that the inclination angle has a significant impact on the flow and temperature fields and the heat transfer performance at high Rayleigh numbers. In fact, the heat transfer rate is maximised at a specific inclination angle depending on Rayleigh number and solid volume fraction.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.