Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 56, 2009 - Issue 7
137
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Modeling of Pressure-Driven Nitrogen Slip Flow in Long Rectangular Microchannels

&
Pages 541-562 | Received 02 Feb 2009, Accepted 11 Aug 2009, Published online: 23 Oct 2009
 

Abstract

This article addresses some analytical and numerical modeling issues regarding the simulation of pressure-driven nitrogen slip flow in long microchannels. The main motivation for the study is to overcome the intense computational effort required by the large computational domain and the slow downstream variation and convergence in this problem, and to address some of the existing concerns with current models. A parallel solver is developed and used along with a serial version to obtain the steady state solution. This approach is found to provide an efficient and accurate solution to the problem. A comparison with earlier results is used for validation, as well as for justifying this hybrid approach. Some implemental issues related to the parallel algorithm are discussed and solved. The effects of variable properties, rarefaction, and the source terms in energy equation are determined and are found to be significant, particularly for the case of uniform wall heat flux boundary condition.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.