Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 57, 2010 - Issue 6
286
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Visualization of Heat Transport during Natural Convection Within Porous Triangular Cavities via Heatline Approach

, , &
Pages 431-452 | Received 27 Feb 2009, Accepted 05 Nov 2009, Published online: 10 Mar 2010
 

Abstract

In this article, natural convection in a porous triangular cavity has been analyzed. Bejan's heatlines concept has been used for visualization of heat transfer. Penalty finite-element method with biquadratic elements is used to solve the nondimensional governing equations for the triangular cavity involving hot inclined walls and cold top wall. The numerical solutions are studied in terms of isotherms, streamlines, heatlines, and local and average Nusselt numbers for a wide range of parameters Da (10−5–10−3), Pr (0.015–1000), and Ra (Ra = 103–5 × 105). For low Darcy number (Da = 10−5), the heat transfer occurs due to conduction as the heatlines are smooth and orthogonal to the isotherms. As the Rayleigh number increases, conduction dominant mode changes into convection dominant mode for Da = 10−3, and the critical Rayleigh number corresponding to the on-set of convection is obtained. Distribution of heatlines illustrate that most of the heat transport for a low Darcy number (Da = 10−5) occurs from the top region of hot inclined walls to the cold top wall, whereas heat transfer is more from the bottom region of hot inclined walls to the cold top wall for a high Darcy number (Da = 10−3). Interesting features of streamlines and heatlines are discussed for lower and higher Prandtl numbers. Heat transfer analysis is obtained in terms of local and average Nusselt numbers (Nu l , Nu t ) and the local and average Nusselt numbers are found to be correlated with heatline patterns within the cavity.

Acknowledgments

The authors would like to thank the anonymous reviewer for critical comments and suggestions which improved the quality of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.