Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 58, 2010 - Issue 6
314
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Entropy Generation Minimization Versus Thermal Mixing Due to Natural Convection in Differentially and Discretely Heated Square Cavities

&
Pages 475-504 | Received 26 May 2010, Accepted 16 Jul 2010, Published online: 09 Sep 2010
 

Abstract

Uniform temperature distribution is a key parameter in many thermal processing applications. A considerable amount of additional energy is used to enhance the fluid mixing in order to maintain the temperature uniformity, but that affects the overall efficiency of the process. In this article, an alternate approach is proposed for maintaining uniform temperature via various distributed/discrete heating strategies while maintaining the minimal entropy generation. The system of laminar natural convection in differentially and discretely heated square cavities filled with various materials (molten metals, air, aqueous solutions, oils) is considered, and finite element simulations are performed for a range of Rayleigh numbers (Ra = 103–105). Entropy generation is evaluated using finite-element basis sets for the first time in this work, and the derivatives at particular nodes are estimated based on the functions within adjacent elements. Analysis of entropy generation in each case is carried out and a detailed investigation of entropy production due to local heat transfer and fluid friction irreversibilities is presented. It is found that a high thermal mixing may not be the optimal situation for achieving uniform temperature distribution based on entropy production. A greater degree of temperature uniformity with moderate thermal mixing may correspond to minimum entropy generation with distributed heating. Further, based on entropy generation minimization approach, it has been thermodynamically established that the distributed heating methodology with multiple heat sources may be the energy efficient strategy for attaining adequate uniform temperature distribution with minimum entropy generation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.