Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 60, 2011 - Issue 1
231
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Thermal Residual Stresses in One-Directional Functionally Graded Plates Subjected to In-Plane Heat Flux

&
Pages 50-83 | Received 11 Oct 2010, Accepted 29 Apr 2011, Published online: 05 Jul 2011
 

Abstract

This study carries out the transient thermal residual stress analyses of functionally graded clamped plates for different in-plane material compositions and in-plane heat fluxes. The heat conduction and Navier equations representing the two-dimensional thermoelastic problem were discretized using the finite-difference method, and the set of linear equations were solved using the pseudo singular value method. Both in-plane temperature distributions and the heat transfer period were affected considerably by the compositional gradient. The type of in-plane heat flux had a minor effect on the temperature profile, but on the heat transfer period. The high stress levels appeared in the ceramic-rich regions. The normal and equivalent stresses exhibited a sharp change in the plates with ceramic-rich as well as metal-rich compositions, and the concentrated on a narrow ceramic layer. A smooth stress variation was achieved through the graded region with a balanced composition of ceramic and metal-phases, and the stress discontinuities disappeared. The in-plane shear stress was negligible. The equivalent stress exhibited a linear temporal variation for both constant and sinusoidal heat fluxes, but a nonlinear variation for the exponential heat flux. In case the heat flux is applied along the metal edge (metal-to-ceramic plate) instead of the ceramic edge, the displacement and stress components exhibited similar distributions to those of a ceramic-to-metal plate but in the opposite direction. As a result, the distribution of in-plane material composition affects only normal stress distributions, whereas the peak stress levels occur in the ceramic-rich regions. Since the normal stresses concentrate along a narrow ceramic layer for ceramic-rich or metal-rich compositions, a balanced in-plane material composition distribution of ceramic and metal would be useful to avoid probable local ceramic fracture or damage.

Acknowledgments

The authors would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) for financial support under its contract 107M142, and the Scientific Research Project Division of Erciyes University under its contract FBY-08-870.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.