Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 61, 2012 - Issue 4
225
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of a Confined Laminar Impinging Jet on a Plate with a Porous Layer Using the Preconditioned Density-Based Algorithm

&
Pages 241-267 | Received 15 Jul 2011, Accepted 20 Nov 2011, Published online: 09 Feb 2012
 

Abstract

The preconditioned density-based algorithm and two-domain approach were used to investigate the fluid flow and heat transfer characteristics of a confined laminar impinging jet on a plate covered with porous layer. In the porous zone, the momentum equations were formulated by the Darcy-Brinkman-Forchheimer model; the thermal nonequilibrium model was adopted for the energy equation. At the porous/fluid interface, the applicability and influence of different hydrodynamic and thermal interfacial conditions were analyzed for the problem. The governing equations were solved by the preconditioned density-based finite-volume method, with preconditioning matrix for equations of porous domain adopted, aiming to eliminate the equation stiffness of porous seepage flows. The effects of Reynolds number, porosity, Darcy number, thermal conductivity ratio, Biot number, and porous layer thickness on the flow pattern and local heat transfer performance were studied. Results indicate that the Reynolds number and porosity don't strongly influence the flow pattern of porous channel, while the Darcy number and porous layer thickness have obvious influence on the flow pattern. The heat transfer performance are greatly influenced by the parameters studied.

Acknowledgments

The work is financially supported by the National Natural Science Foundation of China under grant no. 91130013, and the Specialized Research Fund for the Doctoral Program of Higher Education (20101102110011).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.