Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 66, 2014 - Issue 4
207
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Time-Dependent Photovoltaic-Thermoelectric Hybrid Systems

, , , , &
Pages 402-419 | Received 02 Aug 2013, Accepted 21 Dec 2013, Published online: 04 Jun 2014
 

Abstract

Photovoltaic-thermoelectric hybrid systems that operate in steady state have attracted considerable attention due to the possibility of supplying more power output than the photovoltaic cell alone. In real life, however, the solar energy continually changes during a day, thus rendering the assumption of steady state unrealistic. In this study, we have investigated such time-dependent systems by following the trajectory of the sun between sunrise and sunset. Computed results of thermal efficiencies are parametrized in heat transfer coefficients, the thermal conductivities of the thermoelectric module, and Seebeck coefficients. For values of the Seebeck coefficient greater than 2.13 × 10−3 V/K thermal efficiencies of the hybrid system appear higher than those of the photovoltaic cells alone. To tackle the strong nonlinear coupling between nodal temperatures, and power outputs, we have adopted two-stage iterative schemes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.