Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 67, 2015 - Issue 1
223
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Conjugate Heat Transfer from Sudden Expansion Using Nanofluid

, , , , &
Pages 75-99 | Received 25 Nov 2013, Accepted 07 Mar 2014, Published online: 20 Oct 2014
 

Abstract

Conjugate heat transfer from sudden expansion using nanofluid is studied numerically. The governing equations are solved using unsteady stream function-vorticity formulation method. Results are compared with zero nanoparticle fluid to exhibit the role of nanoparticle. The effect of volume fraction of nanoparticles and type of nanoparticles on heat transfer are examined and found to have a significant impact. Local Nusselt number and average Nusselt number are reported in connection with various nanoparticle, volume fraction, and Reynolds number for expansion ratio 2. Two dimensionality is more pronounced in the solid wall up to recirculation length. Local Nusselt number reaches peak values near the reattachment point and reaches asymptotic value in the downstream. Bottom wall eddy and volume fraction show significant impact on average Nusselt number. The wall thickness causes larger temperature gradient at the conjugate interface boundary, which leads to larger average Nusselt number.

Notes

*zero nanoparticle.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.