Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 66, 2014 - Issue 12
223
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Investigation on Natural Convection Inside the Side Ventilated Square Enclosure with Vertical Mid-Partition

, &
Pages 1389-1418 | Received 12 Jan 2014, Accepted 08 Mar 2014, Published online: 11 Aug 2014
 

Abstract

A finite volume-based computational study of steady laminar natural convection inside the square enclosure with cold partition wall centrally placed on top and bottom is presented. The fluid considered is air with Prandtl number 0.71. Except the partition walls, all other walls were assumed as hot. The heights of inlet and outlet ports are constantly fixed as 20% of height of the enclosure. The height of the opening in the partition walls were 10%, 20%, and 30% of height of enclosure. The buoyancy-driven heat transfer mechanism inside the domain is influenced by the percentage of opening in the partition, Rayleigh number, and geometrical position of inlet and outlet. The cold partition walls attract the flow that subsequently influences the thermal modifications around the partition. The fluid flow and heat transfer were investigated for 81 cases with different positions of inlet and outlet and varying height of openings for Ra = 103, 104, and 105. The cross flow between the vertical walls through the opening in the central partition wall was considered in this study. The formation of vortices and their sizes depends on the configuration of inlet and outlet ports. The higher temperature gradient occurs near the inlet and outlet port of vertical walls. Local Nusselt number is maximum just below the inlet for all cases. Due to the dominance of buoyancy forces, heat transfer rate increases when Rayleigh number increases for all the cases. The hydrodynamic block effect by the openings on the partition wall has significant effect on the velocity profile than on the heat transfer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.