Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 67, 2015 - Issue 1
348
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of Mixed Convection in a Ventilated Cavity in the Presence of a Heat Conducting Circular Cylinder

, &
Pages 52-74 | Received 16 Jan 2014, Accepted 06 Mar 2014, Published online: 20 Oct 2014
 

Abstract

The study is aimed to investigate the mixed convective transport within a ventilated square cavity in presence of a heat conducting circular cylinder. The fluid flow is imposed through an opening at the bottom of the left cavity wall and is taken away by a similar opening at the top of the right cavity wall. The cylinder is placed at the center of the cavity. Two cases are considered depending on the thermal conditions of the cavity walls. In the first case, the left and right vertical walls are kept isothermal with different temperatures and the top and bottom horizontal walls are considered as thermally insulated. For the second case, the top and bottom walls are maintained at different constant temperatures and the left and right walls are considered adiabatic. Heat transfer due to forced flow, thermal buoyancy, and conduction within the cylinder are taken into account. Effect of the cylinder size (0.1 ≤ D ≤ 0.5) and the solid–fluid thermal conductivity ratio (0.1 ≤ K ≤ 10) are explored for various values of Richardson number (0 ≤ Ri ≤ 5) at fixed Reynolds (Re = 100) and Prandtl (Pr = 0.71) numbers. The fluid dynamic and thermal transport phenomena are depicted through streamline and isotherm plots. Additionally, the global thermal parameters such as the average Nusselt number and average fluid temperature of the cavity are presented. It is found that the aforementioned parameters have significant influences on the fluid flow and heat transfer characteristics in the cavity.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/unht.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.