Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 67, 2015 - Issue 4
543
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Heat Transfer Enhancement of Backward-Facing Step Flow by Using Nano-Encapsulated Phase Change Material Slurry

, , &
Pages 381-400 | Received 18 Dec 2013, Accepted 03 May 2014, Published online: 23 Oct 2014
 

Abstract

Laminar forced convection of nano-encapsulated phase change material (NEPCM) slurry over a 2D horizontal backward-facing step is numerically investigated using a finite volume method based on a collocated grid. The slurry consists of water as base fluid and n-octadecane NEPCM particles with an average diameter of 100 nm. Uniform heat flux boundary condition is imposed to the downstream wall while the step and upstream walls are subjected to adiabatic boundary condition. The effects of Reynolds number ranging from 20 to 80, volume fractions of nanoparticles ranging from 0% to 30%, as well as heat flux ranging from 500 to 2,500 W/m2 are studied. In order to understand the physics of flow and heat transfer of slurry over the backward-facing step, the streamlines and isotherms of the flow were studied. An enhancement in heat transfer coefficient up to 67% using slurry as working fluid compared with pure water can be observed. However, because of the higher viscosity of mixture compared with pure water, the slurry can cause a higher pressure drop in the system. Furthermore, as wall heat flux and Reynolds number increase, the heat transfer coefficient of the bottom wall increases until a critical heat flux is reached and heat transfer performance becomes independent of heat flux.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/unht.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.