Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 67, 2015 - Issue 6
443
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A Numerical Study on the 2D Film Cooling of a Flat Surface

, &
Pages 673-695 | Received 11 Oct 2013, Accepted 24 Jul 2014, Published online: 10 Dec 2014
 

Abstract

In this article, the results obtained from a detailed numerical investigation of 2D film cooling over a flat plate through single-slot injection are presented. The effects of mainstream Reynolds number, blowing ratio, density ratio, and injection angle on the effectiveness of film cooling were investigated in the present work. Numerical simulations were carried over a wide range of density ratio ranging from 1.1 to 5 at two mainstream Reynolds numbers (8 × 104 and 1.5 × 105), three blowing ratios (ranging from 1 to 3), and six injection angles (ranging from 15° to 90°). The results show that at lower injection angles of 15°–45°, maximum film-cooling effectiveness occurs at a particular value of velocity ratio which is found to be independent of mainstream Reynolds number, blowing ratio, and density ratio. Based on a combined effect analysis of blowing ratio, density ratio, and injection angle, a relation was obtained for velocity ratio that gives an optimum film-cooling effectiveness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.