Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 1
307
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Entropy Generation for Mixed Convection in a Square Cavity for Various Thermal Boundary Conditions

, , &
Pages 44-74 | Received 13 Mar 2014, Accepted 13 Aug 2014, Published online: 31 Mar 2015
 

Abstract

Finite element simulations were carried out to analyze entropy generation during mixed convection inside square enclosures with an isothermally hot bottom wall, adiabatic top wall, and isothermally cold side walls (case 1) or linearly heated side walls (case 2), or linearly heated left wall with isothermally cold right wall (case 3) for Pr = 0.015–7.2, Re = 1–100, and Gr = 103–105. Local entropy maps are studied in detail, and the dominance of thermal (Sθ,l) and frictional (Sψ,l) irreversibility is studied using Bejan number maps. In addition, variation in total entropy generation (Stotal), average Bejan number (Beav), and average Nusselt number at the bottom wall with Gr are analyzed to correlate irreversibility and the overall heat transfer rate of the system or process. It is found that, for Pr = 0.015 and 7.2, Re = 100 may be the optimal level for higher convective heat transport with minimum entropy generation in all the cases for Gr = 103–105.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.