Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 4
454
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dynamic Simulation on the Thermal Conductivity of Nanofluids in Aggregated and Non-Aggregated States

, , &
Pages 432-453 | Received 13 Jul 2014, Accepted 07 Nov 2014, Published online: 23 Apr 2015
 

Abstract

Nanofluids are engineered by suspending nanoparticles in convectional heat transfer fluids to enhance thermal conductivity. This study is aimed at identifying the role of nanoparticle aggregation in enhancing the thermal conductivity of nanofluids. Molecular dynamic simulation with the Green Kubo method was employed to compute thermal conductivity of nanofluids in aggregated and non-aggregated states. Results show that the thermal conductivity enhancement of nanofluids in an aggregated state is higher than in a non-aggregated state, by up to 35%. The greater enhancement in aggregated nanofluids is attributed to both higher collision among nanoparticles and increases in the potential energy of nanoparticles.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.