Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 11
238
Views
1
CrossRef citations to date
0
Altmetric
Articles

Wall boiling in a vertical annulus: Effect of inlet subcooling and mass flow rate

, &
Pages 776-793 | Received 31 Jan 2019, Accepted 23 Apr 2019, Published online: 10 Jun 2019
 

Abstract

Numerical studies on low flow rate convection boiling in a vertical annulus has been carried out to predict effects of inlet subcooling and mass flow rate. The aspect ratio of vertical annulus is 352 while the annular gap is 3.5 mm. RPI wall boiling model is used for the development of present code and the results are verified with those available in literature. The results show that onset of significant void (OSV) can be delayed to achieve maximum heat transfer by increasing the liquid subcooling and liquid mass flow rate. The average Nusselt number increases almost linearly with increase in the mass flow rate as well as the inlet subcooling. At high heat flux, very high wall temperatures are observed with low subcooling and low mass flow rates. This should be avoided for enhanced safety.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.