Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 6
246
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect

, &
Pages 499-516 | Received 23 Mar 2019, Accepted 05 Jul 2019, Published online: 18 Jul 2019
 

Abstract

The effects of Joule heating, Hartman, Brinkman, and Reynolds numbers on the flow pattern and thermal characteristics of force convection flow through a parallel-plate microchannel are investigated in various nanoparticles volume fraction. Water–Al2O3 is considered as the working nanofluid while taking viscous dissipation effect (VDE) into account. The mid-section of the microchannel is heated with a constant uniform heat flux and influenced by a magnetic field with a uniform strength. The effective thermal conductivity and viscosity of nanofluid are calculated through a new correlation in which the influence of Brownian motion is considered. A control volume finite different scheme, along with the SIMPLE algorithm, is adopted to conduct the numerical analyses and solve the discrete equations. Contour plots of streamlines and isotherms are presented to graphically display the impact of the investigated variables. Furthermore, the values of the Nusselt number for the minimum temperature and maximum velocity are calculated and presented through figures. The results show that all of the Brinkman, Joule, nanofluid concentration, and Hartmann numbers have decreasing effect on the heat transfer. The conclusion is supported by the fact that all the aforementioned factors increase the temperature throughout the flow field. The higher the flow field temperature, the lower the heat transfer from the wall. Higher Brinkman number leads to the friction intensification between flow layers due to considering VDE. It can be said about the Joule heating that, since this term has an inverse relation with the squared velocity, increase in Joule number is followed by a reduction of heat transfer from the walls. Also, an increase in the nanofluid concentration increases the temperature throughout the microchannel leading to heat transfer deterioration.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.