Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
127
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Heat transfer characteristics of nanofluid under the action of magnetic field based on molecular dynamics and flow states

, &
Pages 491-515 | Received 20 Dec 2022, Accepted 16 Feb 2023, Published online: 21 Mar 2023
 

Abstract

Theoretical analysis, numerical simulations, and experimental studies are used to comprehensively investigate the changes in the heat transfer characteristics of Fe3O4–water magnetic nanofluid under different types of magnetic fields and the heat transfer mechanism, providing new ideas for its practical application. By combining the fundamental conservation theorem and the Boussinesq approximation, dimensionless control equations have been established. The analysis of the variation pattern of the calculated values of the source terms under different boundary conditions, as well as the order of magnitude analysis, concludes that: the enhanced trend of Brownian motion and thermophoretic motion is the main reason for the enhanced heat transfer capability of the magnetic nanofluid; where the thermophoretic motion contributes slightly more to the heat transfer; the increase in Joule heat is the reason for the further enhancement of the heat transfer capability by the magnetic field. Volume fraction, temperature, and magnetic field strength are positively correlated with the average convective heat transfer coefficient. The reason for magnetic fields to enhance heat transfer is revealed by the deflection of the magnetic nanofluid by the magnetic body flow under local magnetic fields to form localized reflux. The alternating magnetic field further enhances the ability of magnetic fields to enhance heat transfer in magnetic nanofluids. Overall, the effect of the applied magnetic field on the motion of the magnetic nanoparticles causes the disruption of the thermal boundary layer, which is responsible for the enhanced heat transfer capacity of magnetic nanofluids.

Additional information

Funding

Financial support is provided by the China Postdoctoral Science Foundation (2020M682206).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.