35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer analysis of MHD viscous nanofluid flow over a nonlinearly stretching sheet with heat source/sink: A numerical study

&
Received 19 Apr 2023, Accepted 28 Sep 2023, Published online: 18 Oct 2023
 

Abstract

The present study analyses the magnetohydrodynamics (MHD) viscous nanofluid flow past a nonlinearly stretching sheet embedded in a porous medium under the influence of heat generation and thermal radiation. Further, variable magnetic field as well as variable permeability is used instead of constant magnetic field and permeability due to many therapeutic applications, which makes them distinctive and practically helpful. The MHD viscous flow and heat transfer equations have been generated as coupled second-order nonlinear partial differential equations using a mathematical model that resembles the physical flow problem. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved by Runge–Kutta–Fehlberg’s scheme with shooting method by the help of MATLAB software. The result obtained reveals that enhancing the heat generation parameter, porosity parameter, and radiation parameter upsurges the temperature of the nanofluid, whereas the magnetic parameter shows the reverse effect in the case of velocity distribution. Nusselt number Nux decreases at the rate of 2.6147% for copper–water nanofluid when ϕ increased from 0 to 0.05. Silver nanoparticles have the highest heat transfer as compared to other nanoparticles. Because of this, silver nanoparticles are the most effective thermal conductors for increasing the effectiveness of heat storage in phase transition materials.

Disclosure statement

No potential conflict of interest was reported by the author(s)

Data availability declaration

All data that are used in obtaining the solutions are provided within the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.