Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 59, 2011 - Issue 6
159
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulation of Low-Mach-Number Laminar Mixing and Reacting Flows Using a Dual-Purpose Pressure-Based Algorithm

, &
Pages 495-514 | Received 22 Dec 2010, Accepted 18 Mar 2011, Published online: 09 Jun 2011
 

Abstract

Benefitting from an analogy between compressible and incompressible governing equations, a novel dual-purpose, pressure-based finite-volume algorithm is suitably extended to simulate laminar mixing and reacting flows in low-Mach-number regimes. In our test cases, the Mach number is as high as 0.00326. Definitely, such low-Mach-number flows cannot be readily solved by either regular density-based solvers or most of their extensions. To examine the accuracy and performance of the extended formulation and algorithm, we simulate two benchmark cases including the mixing natural-convection flow in a square cavity with strong temperature gradients and the premixed reacting flow through annuli with high, sharp density variations. In both cases, the fluid flow is treated as an ideal gas, whose properties vary with temperature variation assuming Sutherland's law. Additionally, we do not take into account the Boussinesq limit in treating highly thermobuoyant flow fields. The current results are validated against other available benchmarks and reliable numerical solutions. Despite using a pressure-based algorithm, the Mach number and density variations are predicted very accurately.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.