Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 1
252
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A Comparison of Fluid-Cell and Ghost-Cell Direct Forcing Immersed Boundary Method for Incompressible Flows with Heat Transfer

Pages 30-52 | Received 05 Oct 2014, Accepted 09 Nov 2014, Published online: 22 Apr 2015
 

Abstract

In direct-forcing immersed boundary methods, the forcing terms are generally applied to forcing points on either fluid side (fluid-cell forcing approach) or body side (ghost-cell forcing approach) of the immersed boundary. These direct forcing terms are added to the discretized equations over forcing points in order to implicitly enforce proper boundary conditions on the immersed boundary; hence they dictate the development of the computed flow field. Generally, different forcing approaches adapt different reconstruction models with different stencil supports to compute forcing terms. In this article, a general second-order accurate reconstruction model for solving incompressible Navier-Stokes equations with heat transfer is applied to both the fluid-cell forcing approach and the ghost-cell forcing approach. This allows a meaningful comparison of the solution accuracy and convergence between the two forcing approaches under various boundary conditions. In particular, a simple remedy to reduce the spurious oscillations in pressure force calculation over moving bodies for the ghost-cell forcing approach is devised and verified.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.