Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 3
130
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Solutions of Direct and Inverse Stokes Problems by the Method of Fundamental Solutions and the Laplacian Decomposition

&
Pages 204-223 | Received 23 Oct 2014, Accepted 15 Jan 2015, Published online: 23 Jun 2015
 

Abstract

In this study, both of direct and inverse Stokes problems are stably and accurately analyzed by the method of fundamental solutions (MFS) and the Laplacian decomposition. In order to accurately resolve the Stokes problem, the Laplacian decomposition is adopted to convert the Stokes equations into three Laplace equations, which will be solved by the MFS, with an augmented boundary condition. To enforce the satisfactions of continuity equation along whole boundary as an augmented boundary condition will guarantee the satisfactions of mass conservation inside the computational domain. The MFS is one of the most promising boundary-type meshless methods, since the time-consuming tasks of mesh generation and numerical quadrature can be avoided as well as only boundary nodes are needed for numerical implementations. The numerical solutions of the MFS are expressed as linear combinations of fundamental solutions of Laplace equation and the sources are located out of the computational domain to avoid numerical singularity. The numerical solutions for velocity components, pressure and their gradient terms can be obtained by simple summation due to the simplicity of the MFS. Several numerical examples of direct and inverse Stokes problems are analyzed by the proposed boundary-type meshless numerical scheme. The simplicity and the accuracy of the proposed method are verified by numerical experiments and comparisons. Moreover, different levels of noise are added into boundary conditions of inverse Stokes problems to validate the stability of the proposed numerical scheme.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.