Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 42, 2002 - Issue 3
74
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

A COMPARATIVE ASSESSMENT OF THE PERFORMANCE OF MASS CONSERVATION-BASED ALGORITHMS FOR INCOMPRESSIBLE MULTIPHASE FLOWS

Pages 259-283 | Published online: 30 Nov 2010
 

Abstract

This work is concerned with the implementation and testing, within a structured collocated finite-volume framework, of seven incompressible-segregated multiphase flow algorithms that belong to the mass conservation-based algorithms (MCBA) group in which the pressure-correction equation is derived from overall mass conservation. The pressure-correction schemes in these algorithms are based on SIMPLE, SIMPLEC, SIMPLEX, SIMPLEM, SIMPLEST, PISO, and PRIME. The performance and accuracy of the multiphase algorithms are assessed by solving eight one-dimensional two-phase flow problems spanning the spectrum from dilute bubbly to dense gas-solid flows. The main outcome of this study is a clear demonstration of the capability of all MCBA algorithms to deal with multiphase flow situations. Moreover, results displayed in terms of convergence history plots and CPU times indicate that the performance of the MCBA versions of SIMPLE, SIMPLEC, and SIMPLEX are very close. In general, the performance of SIMPLEST approaches that of SIMPLE for diffusion-dominated flows. As expected, the PRIME algorithm is found to be the most expensive, due to its explicit treatment of the phasic momentum equations. The PISO algorithm is generally more expensive than SIMPLE, and its performance depends on the type of flow and solution method used. The behavior of SIMPLEM is consistent, and in terms of CPU effort it stands between PRIME and SIMPLE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.