Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 48, 2005 - Issue 6
113
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Development of a Dispersion Relation-Preserving Upwinding Scheme for Incompressible Navier–Stokes Equations on NonStaggered Grids

, &
Pages 543-569 | Received 03 Jun 2005, Accepted 15 Jul 2005, Published online: 22 Aug 2006
 

ABSTRACT

In this article a scheme which preserves the dispersion relation for convective terms is proposed for solving the two-dimensional incompressible Navier–Stokes equations on nonstaggered grids. For the sake of computational efficiency, the splitting methods of Adams-Bashforth and Adams-Moulton are employed in the predictor and corrector steps, respectively, to render second-order temporal accuracy. For the sake of convective stability and dispersive accuracy, the linearized convective terms present in the predictor and corrector steps at different time steps are approximated by a dispersion relation-preserving (DRP) scheme. The DRP upwinding scheme developed within the 13-point stencil framework is rigorously studied by virtue of dispersion and Fourier stability analyses. To validate the proposed method, we investigate several problems that are amenable to exact solutions. Results with good rates of convergence are obtained for both scalar and Navier–Stokes problems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.