Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 48, 2005 - Issue 1
896
Views
94
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulations of Heat Transfer and Fluid Flow Problems Using an Immersed-Boundary Finite-Volume Method on NonStaggered Grids

, , &
Pages 1-24 | Received 15 Jul 2004, Accepted 30 Dec 2004, Published online: 24 Feb 2007
 

ABSTRACT

This article describes the application of the immersed boundary technique for simulating fluid flow and heat transfer problems over or inside complex geometries. The methodology is based on a fractional step method to integrate in time. The governing equations are discretized and solved on a regular mesh with a finite-volume nonstaggered grid technique. Implementations of Dirichlet and Neumann types of boundary conditions are developed and completely validated. Several phenomenologically different fluid flow and heat transfer problems are simulated using the technique considered in this study. The accuracy of the method is second-order, and the efficiency is verified by favorable comparison with previous results from numerical simulations and laboratory experiments.

The authors would like to thank Ms. Renate Mittelmann from the Department of Mathematics at Arizona State University for access to computer facilities. We also acknowledge the useful comments of Dr. Andrew Orr from University College London and of the anonymous referees for bringing to our attention the immersed continuum method.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.